Bitcoin Price Prediction

Bitcoin is currently the leading global provider of cryptocurrency. Cryptocurrency allows users to safely and anonymously use the Internet to perform digital currency transfers and storage. In recent years, the Bitcoin network has attracted investors, businesses, and corporations while facilitating services and product deals. Moreover, Bitcoin has made itself the dominant source of decentralized cryptocurrency. While considerable research has been done concerning Bitcoin network analysis, limited research has been conducted on predicting the Bitcoin price. The purpose of this study is to predict the price of Bitcoin and changes therein using the grey system theory. The first order grey model (GM (1,1)) is used for this purpose. It uses a first-order differential equation to model the trend of time series. The results show that the GM (1,1) model predicts Bitcoin’s price accurately and that one can earn a maximum profit confidence level of approximately 98% by choosing the appropriate time frame and by managing investment assets.

Satoshi Nakamoto is the creator of Bitcoin (Nakamoto 2008). This name was used for the first time in 2008 and it is still unclear if this is a real name or nickname. In 2008, he published an article about cryptography on a mailing list of the website “www.metzdowd.com”. The article introduced a kind of digital currency that later became Bitcoin. In early 2009, he released Bitcoin’s source code, along with binary code compiled on “www.sourceforge.net”.

In June 2009, Nakamoto launched the peer to peer Bitcoin network (Kaushal 2016) that allows individual members of the network to track all transactions, and started to mine Bitcoin. During the early days of crypto mining, there were few miners in the network. Therefore, the mining difficulty was low (Franco, 2014). These few miners were able to extract huge amounts of Bitcoin. Franco’s (2014) study used a Bitcoin data analysis and discovered that Nakamoto extracted nearly 1,000,000 Bitcoins. Interestingly, none of these Bitcoins had ever been spent, but the reason behind it is unknown. However, it is obvious that as soon as these Bitcoins are spent by Nakamoto, his identity will be known, as blockchain transactions are trackable by everyone in the network and the transfer of these Bitcoins to a person can be tracked in the real world (Franco, 2014). Nakamoto deliberately created a decentralized network and stated that after the bitter experiences of the nineties and more than a decade of public trust in third parties and their systems, many people use a decentralized network (Nakamoto 2008). The creator of Bitcoin believes that within the next 10?years, digital currency will replace conventional currencies.

Bitcoin is a digital currency that uses protocols and cryptographic algorithms to determine the security of transactions and to create new ones (Renato and Dos 2017). Bitcoin is the first transfer and transaction system that uses nodes and that does not use third party processing and confirmation of transactions. Bitcoin allows direct transactions between individuals, which is the main feature that distinguishes it from traditional currencies. The fact that Bitcoin does not need third-party agencies is one of the reasons for its popularity. This unique characteristic means that the entire system is decentralized (Brito and Castilllo 2013). The network assumes that most nodes—which are, in fact, individuals—are honest and intercepts all transactions. The Bitcoin system does not have a mediating entity and no third party for managing transactions; therefore, several existing nodes process each transaction. These nodes are responsible for registering each transaction in a public LEDGER called a blockchain. The nodes that process transactions are called “miners” and the process “mining.” As compensation for the registration of each transaction in the blockchain, a reward is given to the miner. Miners perform the calculation needed to record the data and a completed and verified process chooses a miner as the winner to update the blockchain. Each participant has a revised version of the audit, and therefore, the entire system is decentralized (Elwell et al, 2014).

Recently, Shi (2016) proposed a new proof-of-work mechanism that improves decentralization and reduces the risk of attacks by 51% without increasing the risk of Sybil attacks (a cyber security attack wherein a reputation system is subverted by forging identities). Renato and Dos (2017) examined the system type of Bitcoin and concluded that the Bitcoin network is not a complex system with only algorithmic complexity, and that it will probably not enter a chaotic phase. The advantages of using a blockchain network are: transparency of information, no need for third parties, the possibility of international payments, anonymity of users, irreversible payments, no transaction tax, low transaction costs, and a low risk of theft. Bitcoin is traded in more than 40 exchanges around the world, and currently has a market worth of US$ 16 billion.

As Bitcoin is used by ordinary people and because of its lack of relevance to other assets, Bitcoin has become an attractive option for investors. Therefore, the ability to predict prices would be a great help for investors. Considering the importance of the topic, many researchers have recently studied Bitcoin price prediction. Almeida et al. (2015) reviewed an artificial neural network (ANN) model to predict the Bitcoin price using the last day price and turnover volumes. The main problem with their method is the requirement of a large amount data for the prediction. McNally’s (2016) research concerns predicting Bitcoin prices using machine learning. This was achieved by using several RNN, ARIMA, and LSTM patterns. The error percentages of the RNN, ARIMA, and LSTM models were 5.45%, 53.47%, and 6.87% respectively (James et al. 2013; McNally 2016). Greaves and Au (2015) investigated the characteristics of the blockchain network based on Bitcoin’s future price using an ANN. The results showed that the average accuracy is approximately 55%. Shah and Zhang (2014) used the nonparametric classification technique developed by Chen et al. (2013) to predict price trends, claiming that a successful Bitcoin strategy would be based on Bayesian regression if its accuracy is 89%. Madan et al. (2015) used Bitcoin blockchain network properties to predict Bitcoin prices. Using SVM algorithms, binomial logistic regression classifiers, and random forests, they predicted the Bitcoin price with an accuracy of 55%. Georgoula et al. (2015) investigated the determinants of the Bitcoin rate along with an emotional analysis using SVM. The result showed that the amount of Wikipedia hits and hash rates in the network had a positive relationship with the Bitcoin price. In another study, Matta et al. (2015a) aimed to predict Bitcoin trading volumes. They examined whether the general feeling that aggregates in a set of Twitter posts could be used to predict changes in the Bitcoin market. The results showed that there was a significant association between Bitcoin’s upcoming price and the volume of tweets during a day. Similarly, the volume of Google searches for the term “bitcoin” affect the Bitcoin price (Matta et al. 2015b). Some studies obtained similar results using wavelets (Kristoufek 2015; Vidal 2014). For example, Kristoufek found a direct connection between search engine views, hash rates, and bitcoin mining complexity in the long term by analyzing the dependency of the microwaves on the Bitcoin price. Ciaian et al. (2016) studied the price formation of Bitcoin using both traditional and digital specific factors affecting currencies. They found that market forces and Bitcoin attractiveness are two major factors in determining the Bitcoin price. Bouri et al. (2017) studied the relationship between Bitcoin and commodities, focusing on the energy market. Their results showed that Bitcoin could work as a diversifier in this market.

Based on these previous studies, it is clear that the Bitcoin price is dependent on many nondeterministic factors, and that predicting the price is not an easy task. This study proposes grey system theory for predicting the Bitcoin price. The next section introduces a grey model for predicting the Bitcoin price and shows that this method is more suitable and more accurate than existing models.