Future Technology: 24 Ideas About to Change Our World (3 of 3)

Do repost and rate:

 

 

19

Self-driving trucks

We’ve almost got used to the idea of driverless cars before we’ve even seen one on the roads. The truth is, you might well see a lot more driverless trucks – after all, logistics make the world go round. They’ll be cheaper to run than regular rigs, driving more smoothly and so using less fuel. Computers never get tired or need comfort breaks, so they’ll run longer routes. And they could drive in convoys, nose-to-tail, to minimise wind resistance.

Companies like Mercedes and Peloton are already exploring these possibilities, and if the promised gains materialise, freight companies could upgrade entire fleets overnight. On the downside, it could put drivers instantly out of work, and even staff at the truck stops set up to service them, but many companies have said the trucks will still need a human passenger to ensure their cargo is safe.

 

 

20

?3 pain-free tattoo removal

Got a tattoo that you now regret? There may soon be a gentler, cheaper alternative to laser removal.

PhD student Alec Falkenham in the USA has worked out how to harness a property of your body’s own immune system. He’s developed a cream that delivers drugs to white blood cells called ‘macrophages’ (Greek for ‘big eaters’), causing them to release the ink they took up in order to protect your skin during the tattooing process.

 

 

21

Artificial neurons on silicon chips

  One of the artificial neurons in its protective casing on a fingertip © University of Bath/PA

Scientists have found a way to attach artificial neurons onto silicon chips, mimicking the neurons in our nervous system and copying their electrical properties.

“Until now neurons have been like black boxes, but we have managed to open the black box and peer inside,” said Professor Alain Nogaret, from the University of Bath, who led the project.

“Our work is paradigm-changing because it provides a robust method to reproduce the electrical properties of real neurons in minute detail.

“But it’s wider than that, because our neurons only need 140 nanowatts of power. That’s a billionth the power requirement of a microprocessor, which other attempts to make synthetic neurons have used.

Researchers hope their work could be used in medical implants to treat conditions such as heart failure and Alzheimer’s as it requires so little power.

 

 

22

Floating farms

The UN predicts there will be two billion more people in the world by 2050, creating a demand for 70 per cent more food. By that time, 80 per cent of us will be living in cities, and most food we eat in urban areas is brought in. So farms moored on the sea or inland lakes close to cities would certainly reduce food miles.

But how would they work? A design by architect Javier Ponce of Forward Thinking Architecture shows a 24m-tall, three-tiered structure with solar panels on top to provide energy. The middle tier grows a variety of veg over an area of 51,000m2, using not soil but nutrients in liquid. These nutrients and plant matter would drop into the bottom layer to feed fish, which are farmed in an enclosed space.

A single Smart Floating Farm measuring 350 x 200m would produce an estimated 8.1 tonnes of vegetables and 1.7 tonnes of fish a year. The units are designed to bolt together, which is handy since we’ll need a lot of them: Dubai, for instance, imports 11,000 tonnes of fruit and veg every day.

 

 

23

Pleistocene Park

 

Russian scientist Sergey Zimov hopes to recreate a 12,000-year-old environment in a wildlife park for herbivores like wild horse and bison, with extinct megafauna like mammoths replaced by modern hybrids. Zimov will study the impact of the animals on environment and climate.

 

 

24

Near-perfect insulation

There are two things the majority of people in the Western world own: a refrigerator and a mobile phone. And aerogels could revolutionise the manufacture of both.

An aerogel is a material that’s full of tiny holes. Made by extracting all the liquid from a gel, it can be up to 95 per cent pores. Those pores are so small - between 20 and 50 nanometres - that gas molecules can’t squeeze through them. As a result, aerogels can’t transport heat, making for a material with incredible insulating properties.

 

 

If you want to know about the first and second article, just click here ...

https://www.publish0x.com/how-to-trade-cryptocurrency/future-technology-24-ideas-about-to-change-our-world-1-of-3-xxwqyqm  

https://www.publish0x.com/how-to-trade-cryptocurrency/future-technology-24-ideas-about-to-change-our-world-2-of-3-xdnjgvr   

   

Regulation and Society adoption

Ждем новостей

Нет новых страниц

Следующая новость